Use app×
Join Bloom Tuition
One on One Online Tuition
JEE MAIN 2025 Foundation Course
NEET 2025 Foundation Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
96 views
in Parabola by (96.5k points)
closed by
Let \(0 < {\rm{\theta }} < \frac{{\rm{\pi }}}{2}\). If the eccentricity of the hyperbola \(\frac{{{{\rm{x}}^2}}}{{{\rm{co}}{{\rm{s}}^2}{\rm{\theta }}}} - \frac{{{{\rm{y}}^2}}}{{{\rm{si}}{{\rm{n}}^2}{\rm{\theta }}}} = 1\) is greater than 2, then the length of its latus rectum lies in the interval:
1. (3, ∞)
2. \(\left( {\frac{3}{2},{\rm{\;}}2} \right]\)
3. (2, 3]
4. \(\left( {1,{\rm{\;}}\frac{3}{2}} \right]\)

1 Answer

0 votes
by (85.8k points)
selected by
 
Best answer
Correct Answer - Option 1 : (3, ∞)

From question, the hyperbola is given by the equation:

\(\frac{{{{\rm{x}}^2}}}{{{\rm{co}}{{\rm{s}}^2}{\rm{\theta }}}} - \frac{{{{\rm{y}}^2}}}{{{\rm{si}}{{\rm{n}}^2}{\rm{\theta }}}} = 1\) 

Now, the general equation of hyperbola is:

\(\frac{{{{\rm{x}}^2}}}{{{{\rm{a}}^2}}} - \frac{{{{\rm{y}}^2}}}{{{{\rm{b}}^2}}} = 1\) 

On comparing, general equation and given equation,

⇒ a2 = cos2 θ

⇒ b2 = sin2 θ

Given, the eccentricity of the hyperbola is greater than 2.

The eccentricity of the hyperbola is given by the formula:

\({\rm{e}} = \sqrt {1 + \frac{{{{\sin }^2}{\rm{\theta }}}}{{{{\cos }^2}{\rm{\theta }}}}}\) 

Now,

⇒ e > 2

\(\Rightarrow \sqrt {1 + \frac{{{{\sin }^2}{\rm{\theta }}}}{{{{\cos }^2}{\rm{\theta }}}}} > 2\) 

\(\because \left[ \tan \text{ }\!\!\theta\!\!\text{ }=\frac{\sin \text{ }\!\!\theta\!\!\text{ }}{\cos \text{ }\!\!\theta\!\!\text{ }} \right]\) 

\(\Rightarrow \sqrt{1+{{\tan }^{2}}\text{ }\!\!\theta\!\!\text{ }}>2\) 

On squaring both sides,

⇒ 1 + tan2 θ > 4

⇒ tan2 θ > 3

Taking square root on both sides,

\(\Rightarrow \tan \text{ }\!\!\theta\!\!\text{ }>\sqrt{3}\) 

Let’s take tan θ as x for easy calculation.

\(\Rightarrow \text{x}>\sqrt{3}\Rightarrow \left| \text{x} \right|>\sqrt{3}\Rightarrow \text{x}\in \left( -\infty ,\text{ }\!\!~\!\!\text{ }-\sqrt{3} \right)\cup \left( \sqrt{3},\text{ }\!\!~\!\!\text{ }\infty \right)\)

From question, \(\text{ }\!\!\theta\!\!\text{ }\in \left[ 0,\text{ }\!\!~\!\!\text{ }\frac{\text{ }\!\!\pi\!\!\text{ }}{2} \right]\)

\(\Rightarrow \tan \text{ }\!\!\theta\!\!\text{ }\in \left( \sqrt{3},\text{ }\!\!~\!\!\text{ }\infty \right)\) 

\(\because \tan \frac{\text{ }\!\!\pi\!\!\text{ }}{3}=\sqrt{3}~\text{and}~\tan \frac{\text{ }\!\!\pi\!\!\text{ }}{2}=\infty\) 

\(\therefore \text{ }\!\!\theta\!\!\text{ }\in \left( \frac{\text{ }\!\!\pi\!\!\text{ }}{3},\text{ }\!\!~\!\!\text{ }\frac{\text{ }\!\!\pi\!\!\text{ }}{2} \right)\) 

From question, we need to find the interval of the length of its latus rectum. So, we need to find the maximum value and minimum value.

The length of the latus rectum of hyperbola is given by the formula:

\(\text{LR}=\frac{2{{\text{b}}^{2}}}{\text{a}}\) 

On substituting the values,

\(\Rightarrow \text{LR}=\frac{2\left( {{\sin }^{2}}\text{ }\!\!\theta\!\!\text{ } \right)}{\cos \text{ }\!\!\theta\!\!\text{ }}\) 

⇒ LR = 2 sin θ.tan θ

The minimum length of the latus rectum \(\left[ \text{ }\!\!\theta\!\!\text{ }\in \frac{\text{ }\!\!\pi\!\!\text{ }}{3} \right]\) is:

\(\Rightarrow \text{L}{{\text{R}}_{\text{min}}}=2\sin \left( \frac{\text{ }\!\!\pi\!\!\text{ }}{3} \right).\tan \left( \frac{\text{ }\!\!\pi\!\!\text{ }}{3} \right)\) 

\(\left[ \begin{matrix} \sin \left( \frac{\text{ }\!\!\pi\!\!\text{ }}{3} \right)=\frac{\sqrt{3}}{2} \\ \tan \left( \frac{\text{ }\!\!\pi\!\!\text{ }}{3} \right)=\sqrt{3} \\ \end{matrix} \right]\)

\(\Rightarrow \text{L}{{\text{R}}_{\text{min}}}=2\left( \frac{\sqrt{3}}{2} \right)\sqrt{3}\) 

∴ LRmin = 3

The maximum length of the latus rectum \(\left[ \text{ }\!\!\theta\!\!\text{ }\in \frac{\text{ }\!\!\pi\!\!\text{ }}{2} \right]\) is:

\(\Rightarrow \text{L}{{\text{R}}_{\text{max}}}=2\sin \left( \frac{\text{ }\!\!\pi\!\!\text{ }}{2} \right).\tan \left( \frac{\text{ }\!\!\pi\!\!\text{ }}{2} \right)\) 

\(\because \left[ \begin{matrix} \sin \left( \frac{\text{ }\!\!\pi\!\!\text{ }}{2} \right)=1 \\ \tan \left( \frac{\text{ }\!\!\pi\!\!\text{ }}{2} \right)=\infty \\ \end{matrix} \right]\) 

⇒ LRmax = 2(1)(∞)

∴ LRmax = ∞

Now, the interval of the latus rectum is (3, ∞).

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...