Use app×
Join Bloom Tuition
One on One Online Tuition
JEE MAIN 2025 Foundation Course
NEET 2025 Foundation Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
+1 vote
684 views
in Olympiad by (40 points)
Prove that \[ \int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+a x+a^{2}\right)\left(x^{2}+b x+b^{2}\right)}=\frac{2 \pi(a+b)}{\sqrt{3} a b\left(a^{2}+a b+b^{2}\right)} \]

Please log in or register to answer this question.

1 Answer

+1 vote
by (57.0k points)

\(\frac 1{(x^2 + ax + a^2)(x^2+bx + b^2)} = \frac{Ax + B}{x^2 + ax+a^2}+\frac{Cx + D}{x^2 + bx + b^2}\)

\(\therefore 1 = (Ax + B) (x^2 + bx + b^2) + (Cx +D) (x^2 + ax + a^2)\)

Also,

\((A + C)x^3 + (Ab+B + aC + D)x^2 \\+(Ab^2 + Bb + Ca^2 + Da)x + (Bb^2 + Da^2) = 1\)

\(\therefore A + C =0\)   .....(1)

\(Ab + B+ Ca +D = 0\)   .....(2)

\(Ab^2 + Bb + Ca^2 + Da = 0\)   .....(3)

\(Bb^2 + Da^2 = 1\)   ......(4)

From (3),

\((Ab + B)b + (Ca+ D)a = 0\)

\(\therefore Ca + D = -\frac{b}a (Ab + B) \)

From (2),

\((Ab + B) - \frac ba (Ab + B) = 0\)

⇒ \((1 - \frac ba) (Ab + B) = 0\)

⇒ \(Ab + B = 0\)

⇒ \(B = -Ab\)      \((\because a \ne b)\)

\(\therefore Ca + D = 0 \)    (From (2))

⇒ \(D = -Ca\)

From (4),

\(-Ab^3 - Ca^3 = 1\)

\(Ab^3 + Ca^3 = -1\)

\(-Cb^3 + Ca^3 = - 1\)   (From(1))

⇒ \(C(a^3 - b^3) = -1\)

\(\therefore C = \frac 1{b^3 - a^3} = \frac{-1}{a^3 - b^3}\)

\(\therefore A = -C = \frac 1{a^3 - b^3}\)

\(B = -Ab = \frac{-b}{a^3 - b^3}\)

\(D = -Ca = \frac a{a^3 - b^3}\)

\(\therefore \frac 1{(x^2 + ax + b^2)(x^2 + bx + b^2)} = \frac 1{a^3 - b^3} \frac{x-b}{x^2 + ax + b^2} - \frac 1{a^3 - b^3}\frac{x-a}{^2 + bx + b^2}\)

\(\therefore \int\limits_{-\infty}^{\infty} \frac{dx}{(x^2 + ax + a^2 )(x^2 + bx + b^2)} = \frac 1{2(a^3 - b^3)} \int\limits_{-\infty}^\infty \frac{2x-2b}{x^2+ ax+a^2 } - \frac1{2(a^3 - b^3)} \int \limits_{-\infty}^\infty \frac{2x-2a}{x^2 + bx + b^2}dx\)

\(= \frac1{2(a^3 - b^3)} \left[\log (x^2 + ax + a^2)- \log(x^2 + bx + b^2)\right]_{-\infty}^\infty \\- \frac{2b+a}{2(a^3 - b^3)} \int\limits_{-\infty}^\infty \cfrac{dx}{(x + \frac a2)^2 + \frac{3a^2}4}+\frac{2a +b}{2(a^3 - b^3)} \int\limits_{-\infty}^{\infty} \cfrac{dx}{(x + \frac b2)^2 + \frac{3b^2}4}\)

\(= \frac1{2(a^3 - b^3)}\left[\log\left(\cfrac{1 + \frac ax + \frac{a^2}{x^2}}{1 + \frac bx + \frac{b^2}{x^2}}\right)\right] _{-\infty}^\infty- \frac{2b +a}{2(a^3 - b^3)} \times \frac 1{\frac{\sqrt 3a}2} \left[ \tan^{-1} \left(\cfrac{x + \frac a2}{\frac{\sqrt3a}2}\right)\right]_{-\infty}^\infty\\ + \frac{2a + b}{2(a^3 - b^3)} \times \frac 1{\frac{\sqrt 3b}2} \left[ \tan^{-1} \left(\cfrac{x + \frac b2}{\frac{\sqrt3b}2}\right)\right]_{-\infty}^\infty \)

\(= \frac 1{2(a^3 - b^3)} [\log 1]_{-\infty}^\infty - \frac{2b +a}{\sqrt 3a (a^3 - b^3)}\times (\tan^{-1}\infty - \tan^{-1}(-\infty))\\+ \frac{2a + b}{\sqrt 3 b(a^3 - b^3)}(\tan^{-1}{\infty}-\tan^{-1}-\infty)\)

\(= 0 - \frac{2b +a}{\sqrt 3 a(a^3 - b^3)}\times \left(\frac \pi 2+ \frac \pi 2\right) + \frac{2a +b}{\sqrt 3b(a^3 -b^3)}\left(\frac \pi 2 + \frac \pi 2\right)\)

\(= \frac{-(2b +a)\pi}{\sqrt 3 a (a^3 - b^3)} + \frac{(2a + b)\pi}{\sqrt 3b(a^3 - b^3)}\)

\(= \frac{\pi (-2b^2 - ab + 2a^2 + ab)}{\sqrt 3 ab(a^3 - b^3)}\)

\(= \frac{2\pi(a - b)(a + b)}{\sqrt 3 ab (a -b)(a^2 +ab + b^2)}\)

\(= \frac{2\pi (a + b)}{\sqrt 3 ab (a^2 + ab+ b^2)}\)

Hence proved.

by (40 points)
How is it possible
by (57.0k points)
Asking for which part?

Related questions

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...